New Metal Oxides of the Family $A_m[(TO)_q]$: ALiMn₃O₄ and ALiZn₃O₄ (A = K, Rb)*

R. HOPPE,** E. SEIPP, AND R. BAIER

Institut für Anorganische und Analytische Chemie, Justus Liebig-Universität, Heinrich-Buff-Ring 58, D-6300 Giessen, West Germany

Received February 3, 1987

The new compounds KLiMn₃O₄ (I), RbLiMn₃O₄ (II), KLiZn₃O₄ (III) and RbLiZn₃O₄ (IV) have been prepared by solid state reaction of A_2O (A = K, Rb), Li₂O, and MO (M = Mn, Zn). The isomorphous compounds are tetragonal, space group I4/m, Z = 2, with lattice constants a = 838.32(4) pm, c =341.88(3) pm for I; a = 840.66(8) pm, c = 344.85(4) pm for II; a = 819.27(9) pm, c = 334.20(7) pm for III, a = 823.62(9) pm, c = 339.73(7) pm for IV, as determined from Guinier X-ray powder patterns. The orange-colored manganates and colorless zincates are sensitive to moisture. The crystal structures of II and III have been determined by single-crystal X-ray techniques and refined to R = 0.09 (II) and R= 0.06 (III). The structure is built up from chains of face-shared cubes, $\frac{1}{2}[AO_{8/2}]$ (A = K, Rb), running parallel to the c axis. These are connected by Li⁺ and M^{2+} (M = Mn, Zn), statistically distributed on tetrahedral positions between the chains. @ 1988 Academic Press, Inc.

Introduction

The zeolites as a subgroup of metal oxides with the formula $A_m[(TO_2)_n]$ (T = tetrahedrally coordinated metal or Si, A = a"big" cation) are well known as stuffed derivatives of possible modifications or KNaZnO₂ forms of SiO₂. With == $K[(NaZn)O_2]$ (m = 1, q = 2) (1) as well as with KNaO (m = 1, q = 1) (2), we noticed the existence of a new series of metal oxides, the general formula being A_m $[(TO)_a]$. In addition, with Rb₂Li₂SiO₄ and $Rb_2Li_2GeO_4$ (3) we found two representatives of another series with the general formula $A_m[(TO_2)_n(TO)_n]$ formally connecting both series mentioned above.

Table I summarizes further examples. Following this point of view, we attempted to prepare other examples of the type A_m $[(TO)_q]$ with, e.g., m = 1 and $q \ge 2$. We wanted to find structural resemblances between corresponding oxides of manganese and zinc.

Experimental

Starting materials. Li₂O was prepared by dehydration of LiOH (11), K₂O, and Rb₂O by oxidation of the metals (12). Graygreenish, very "active" MnO was obtained by thermal decomposition (vacuum) of $MnC_2O_4 \cdot 2H_2O$. ZnO was purchased from Merck and dried at 350°C (5 hr, vacuum).

Preparation. Appropriate quantities of the binary oxides (with a 5% by weight excess of alkali metal oxides) were ground

^{*} On the occasion of the 65th birthday of Professor J. B. Goodenough.

^{**} To whom correspondence should be addressed.

		TABLE I					
Oxides of the General Formula $A_m[(TO)_q]$							
m = 1	q = 1	K[NaO] (2)					
m = 1	q = 2	K[LiZnO ₂] (4); K[LiMnO ₂] (5)					
		$Li_2MnO_2 = Mn[Li_2O_2] (6)$					
m = 1	q = 3	$Rb[LiZn_2O_3]$ (7)					
m = 1	q = 4	$K[Li_{3}MO_{4}] (M = Si_{4}Ge_{7}Ti) (8)$					

m = 2 q = 4 $K_2[Na_3TlO_4] (9)$

m = 2 q = 5 $Rb_2[Li_2Cd_3O_5]$ (10)

thoroughly and transferred to nickel or silver tubes, which after closing werre sealed under argon in quartz tubes. For KLiZn₃O₄ and RbLiMn₃O₄, the mixtures were heated slowly to 300°C and maintained at this temperature for 18 hr, and then the temperature was gradually increased to 940 or 640°C, respectively. After approximately 3 weeks of heating, single crystals were obtained.

Powder samples of KLiZn₃O₄, RbLi Zn₃O₄, KLiMn₃O₄, and RbLiMn₃O₄ were prepared at 400–500°C (5 days). All powder samples as well as the single crystals are sensitive to moisture. The decomposition products of the colorless zincates are chalky powders. In the case of the orangecolored manganates we observed brown decomposition products.

For crystal structure determination, single crystals of KLiZn₃O₄ and RbLiMn₃O₄ were selected under dry argon and sealed in glass capillaries of 0.3-mm diameter. Preliminary Weissenberg and precession photographs suggested that the Laue group was 4/m. Systematic absences were observed for *hkl* with $h + k + l \neq 2n$. The data were collected on a Philips PW1100 automated diffractometer, for details cf. Table II. The crystal structures were solved by direct methods. Leastsquares refinement using the Shel-X program (13) led to R values of 0.06 (for 260 unique hkl) and 0.09 (261 hkl) for KLiZn₃O₄ and RbLiMn₃O₄, respectively. Final atomic

	Formula				
	KLiZn ₃ O ₄	RbLiMn ₃ O ₄			
Lattice constants	cf. Table IV				
Multiplicity	Z	= 2			
Volume (pm ³)	224.3×10^{6}	243.7×10^{6}			
Calculated density	4.533	4.376			
Crystal color	Colorless	Orange			
Crystal shape	Square prismatic	Needle-like			
Radiation	Graphite monochromatized Ag	$K\alpha \ (\lambda = 71.07 \ \text{pm})$			
Linear absorption coefficient (cm ⁻¹)	84.36	88.67			
Data collection technique (Philips PW1100 diffractometer)	$\omega - 2\theta$ scan	ωscan			
Scan width	2.1°	1.5°			
Scan speed	0.07°/sec	0.05°/sec			
Recorded reflections within a $3^{\circ} \leq \theta \leq 26^{\circ}$ half sphere $(\pm h + k \pm l)$	947	1042			
Unique reflections	260	$261[F_{0} > 2\sigma(F_{0})]$			
R merging factor	0.06	0.04			
Weighting scheme	$w = 1.032/(\sigma^2(F_o) + 0.007 F_o ^2)$	$w = 1.548/(\sigma^2(F_o) + 0.0003 F_o ^2)$			
Residual values	$R = 0.061, R_w = 0.069$	$R = 0.090, R_w = 0.071$			

TABLE II Crystal and Refinement Data for KLiZn₃O₄ and RbLiMn₃O₄

Positional and "Anisotropic" Thermal $(pm^2 \times 10^{-4})^a$ Parameters for RbLiMn₃O₄ and KLiZn₃O₄

	Atom	Position	x	у	z	U_{11}	U_{22}	U ₃₃	U_{12}	$U_{13} = U_{23}$
RbLiMn ₃ O ₄	Rb	2a	0	0	0	0.0256(8)	0.0256(8)	0.0255(11)	0	0
	M^b	8 <i>h</i>	0.6327(2)	0.8183(2)	0	0.0087(8)	0.0095(8)	0.0096(8)	-0.0015(5)	0
	0	8 <i>h</i>	0.3991(7)	0.7663(8)	0	0.006(2)	0.013(3)	0.008(2)	-0.003(2)	0
KLiZn₃O₄	к	2 <i>a</i>	0	0	0	0.0133(7)	0.0133(7)	0.0109(11)	0	0
	M^c	8h	0.6330(1)	0.8170(1)	0	0.0069(5)	0.0128(5)	0.0062(6)	-0.0018(3)	0
	0	8h	0.4018(5)	0.7700(6)	0	0.004(2)	0.015(2)	0.007(2)	-0.001(1)	0

^a Anisotropic temperature factors are in the form $\exp[-2\pi^2(U_{11}h^2a^{*2} + \cdots + 2U_{12}hka^*b^*)]$.

^b Site statistically occupied by 2 Li⁺ and 6 Mn²⁺. Refinement (only Mn²⁺ considered) yielded the site occupation factor k(M) = 0.77(1) (expected value 0.759).

^c Site statistically occupied by 2 Li⁺ and 6 Zn²⁺. Refinement (only Zn²⁺ considered) yielded the site occupation factor k(M) = 0.75(1) (expected value 0.759).

parameters based on the centrosymmetric space group I4/m are listed in Table III.

The refinement showed that in both oxides 2 Li⁺ and 6 Zn²⁺ (Mn²⁺) are statistically distributed on an eightfold position (denoted M). Refinement of the site occupancy factors k(M) yielded site occupancies, which are in good agreement to the expected values (Table III).

The powder diffraction patterns of RbLiZn₃O₄ and KLiMn₃O₄ indicate that these oxides are isostructural with their respective K or Rb analogs. Table IV gives the lattice constants calculated from powder data (Guinier–Simon photographs (14), CuK α).

Results

KLiZn₃O₄ and RbLiMn₃O₄ are isostructural. Since Li⁺, Zn²⁺, and Mn²⁺ are tetrahedrally coordinated and K⁺ and Rb⁺ are 8-coordinated, these oxides are members of the $A_m[TO)_q]$ family, according to, e.g., K[{(Li_{1/4}, Zn_{3/4})O}₄]. The coordination polyhedron (*CP*) around O²⁻ is a distorted octahedron (4 *M* plus 2 *A* (*A* = K, Rb) with *A* in *cis* arrangement), see Fig. 3a). Details of the *CP* are presented in Figs. 1a–3a. Important interionic distances and the "motifs of mutual adjunction (15) are given in Table V. KLiZn₃O₄ (RbLiMn₃O₄) contains linear chains of face-shared slightly distorted cubes KO₈ (RbO₈). These chains are arranged as shown in Fig. 4. This arrangement shows that Li⁺ and Zn²⁺ (Mn²⁺) are statistically distributed on tetrahedral vacancies between the $AO_{8/2}$ chains. Connection of the *CP* can be obtained from their Schlegel diagrams (15) (Figs. 1b-3b).

The Madelung Part of Lattice Energy (MAPLE (16))

In Table VI the MAPLE values of the binary constituents of RbLiMn₃O₄ and KLiZn₃O₄ are compared with (a) the results of the average-charge calculations ($M^{1.75+}$) and (b) the mean MAPLE values for ordered distribution of Li⁺ and Mn²⁺

TABLE IV LATTICE CONSTANTS OF QUATERNARY OXIDES (DERIVED FROM GUINIER PHOTOGRAPHS, $CuK\alpha$: $\lambda = 154.18 \text{ pm}$)

Formula	(pm)	(pm)	
KLiZn ₃ O ₄	819.27(9)	334.20(7)	
RbLiZn ₃ O ₄	823.62(9)	339.73(7)	
KLiMn ₃ O ₄	838.32(4)	341.88(3)	
RbLiMn ₃ O ₄	840.66(8)	344.85(4)	

FIG. 1. (a) Schlegel projection of the $CP(Rb^+)$ in RbLiMn₃O₄ and $CP(K^+)$ in KLiZn₃O₄. Interionic distances and angles are listed below (values for the zincate are marked). (b) Schlegel diagram, corresponding to the Schlegel projection.

FIG. 2. (1) Schlegel projection of the CP(M) in RbLiMn₃O₄ (M = Li,Mn) and KLiZn₃O₄ (M = Li, Zn). Distances and angles for the zincate are given in parentheses. (b) Schlegel diagram, corresponding to the Schlegel projection.

FIG. 3. (a) Schlegel projection and (b) Schlegel diagram of the CP(O) in RbLiMn₃O₄.

HOPPE, SEIPP, AND BAIER

	RbLiMn₃O₄ and KLiZ	4 / 1			
	4 0	CN	ECoN	MEFIR	
1 Rb (K)	8/2 295.0 (288.6)	8	8.2(8.2)	155(150)	
4 M	1/1 + 2/2 + 1/1 201.2 203.8 214.5 (193.3 197.7 211.5)	4	3.9(3.8)	66(60)	
CN ECoN MEFIR	6 5.9(5.9) 140(139)	$M = 1 \text{ Li}^{+} + 3 \text{ Mn}^{2+} (\text{RbLiMn}_3\text{O}_4)$ = 1 Li^{+} + 3 Zn^{2+} (KLiZn_3\text{O}_4)			

TABLE V
MOTIFS OF MUTUAL ADJUNCTIONS AND INTERATOMIC DISTANCES (pm) OF
RbLiMn ₃ O ₄ and KLiZn ₃ O ₄ (in parentheses)

Note. CN, coordination number; ECoN, effective coordination number (15); MEFIR, mean fictive ionic radii (15) (calculated using ionic radii from Shannon (20)).

Further interatomic distances (A = K, Rb; M see above):

	A-2A	A-8M	<i>M</i> -2 <i>M</i>	0–20	
KLiZn ₃ O ₄	334.2	327.5	277.0	301.4	
RbLiMn ₃ O ₄	344.9	337.3	286.0	305.5	

TABLE VI

The Madelung Part of Lattice Energy (MAPLE) for $KLiZn_3O_4$ and $RbLiMn_3O_4$ (kcal/mole)

Model I: Calculation by use of an average charge (1.75+) for disordered ions $(Li^+, Zn^{2+} or Li^+, Mn^{2+} respectively)$

Model II: Mean of the MAPLE values for the seven possible ordered arrangements of Li^+ and $Zn^{2+}(Mn^{2+})$ in the unit cell

		Binary	Model I	Model II			Binary	Model I	Model II
к	1×	104.9 ^a	108.4	108.4	Rb	1×	100.2 ^a	110.0	110.0
Li	1×	146.2 ^a	428.9	215.6	Li	$1 \times$	146.2 ^a	414.4	207.8
Zn	3×	550.9ª	428.9	509.9	Mn	$3 \times$	521.8ª	414.4	492.8
0	4×	529.9 ^b	528.3	528.3	0	4×	505.9°	512.3	512.3
Σ		4023.3	3937.2	3966.9	Σ		3835.4	3816.8	3845.4
Devi	ation		-2.1%	-1.4%	Devi	ation		-0.5%	+0.2%

T

^a From K₂O, Rb₂O, Li₂O, ZnO, respectively, and MnO.

^b Corresponding value from K₂O, Li₂O, and ZnO.

^c Corresponding value from Rb₂O, Li₂O, and MnO.

FIG. 4. Projection of the structure of KLiZn₃O₄ down the c axis (heights x = 0 are omitted).

 (Zn^{2+}) . The discrepancy between corresponding values can be regarded as acceptable.

Closing Remarks

Like in KLiZnO₂ (4) and KLiMnO₂ (5) the similarity between the zinc and manganese oxides is striking. In the case of other oxides of the type $A NaM_3O_4$ (with A = K, Rb, Cs and M = Mn, Zn) we find principally the same structural features, but in every case there is an unsolved superstructure observed. Other members of this family are the tetragonal oxides NaLi₃SiO₄ and NaLi₃GeO₄ (17), the triclinic compounds KLi₃MO₄ (M = Si, Ge, Ti) (8) and CsNa₃PbO₄ (18), and surprisingly KLi₃ PbO₄ (19).

Acknowledgments

The authors thank Dr. M. Serafin for performing the data collection. This research was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- R. HOPPE AND R. BAIER, Z. Anorg. Allg. Chem. 511, 161 (1984).
- 2. H. SABROWSKY AND U. SCHRÖER, Z. Naturforsch. B 37, 818 (1982).
- 3. R. HOFMANN, B. NOWITZKI, AND R. HOPPE, Z. Naturforsch. B 40, 1441 (1985).
- 4. R. BAIER AND R. HOPPE, Z. Anorg. Allg. Chem. 522, 23 (1985).
- 5. R. HOPPE AND E. SEIPP, Z. Anorg. Allg. Chem. **522**, 33 (1985).
- 6. W. DAVID, J. B. GOODENOUGH, M. THACKERAY, AND M. THOMAS, *Rev. Chim. Miner.* 20, 636 (1983).
- 7. R. BAIER AND R. HOPPE, unpublished.
- 8. R. WERTHMANN AND R. HOPPE, Z. Anorg. Allg. Chem. 509, 7 (1984).
- J. KÖHLER AND R. HOPPE, J. Less-Common Met. 108, 279 (1985).
- 10. E. SEIPP AND R. HOPPE, unpublished.
- 11. W. KLEMM AND H. SCHARF, Z. Anorg. Allg. Chem. 303, 263 (1960).
- 12. L. HACKSPILL, Bull. Soc. Chim. Fr. 9, 464 (1911).
- 13. G. M. SHELDRICK, "Shel-X Program," Cambridge (1976).
- 14. A. SIMON, Appl. Crystallogr. 3, 11 (1970).
- 15. R. HOPPE, J. Solid State Chem. 64, 372 (1986).
- 16. R. HOPPE, Angew. Chem. 78, 52 (1966).
- B. NOWITZKI AND R. HOPPE, Rev. Chim. Miner. 23, 217 (1986).
- H. STOLL AND R. HOPPE, Rev. Chim. Miner. 24, 96 (1987).
- B. BRAZEL AND R. HOPPE, Z. Anorg. Allg. Chem. 497, 176 (1983).
- 20. R. D. SHANNON, Acta Crystallogr. A 32, 751 (1976).